If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+33a-148=0
a = 1; b = 33; c = -148;
Δ = b2-4ac
Δ = 332-4·1·(-148)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-41}{2*1}=\frac{-74}{2} =-37 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+41}{2*1}=\frac{8}{2} =4 $
| 3x+-1=2x+5 | | -18n=14=-16n-2 | | 29+c/4=10 | | 16x^2=-24x-9 | | -21+5a=-6(a-2) | | a3-2a2+24a+48=0 | | 6y-12y=-18-24 | | 7x-3/5=9/10 | | -21-(-32)=x/2 | | 6x+76=9x-5 | | 6+2(5x-6)=6-4(2x+1) | | -16+2x=-7(6x-4) | | 21-(-32)=x/2 | | -5b+5b=4+4b | | X2+2y2=6 | | 0.3x-1=0.1x(x+10) | | m+60=360 | | 11+6x+3x=7x-1 | | 100x-20050x=75 | | 3(x-5)-15=3x* | | 8=4j-4 | | v^2=-121 | | x+5/8-x-2/2=1/3 | | 3x-2+4/5=8 | | 2(2x+3)=x+4+2x | | x=2(-6/5)=4 | | 2w(w-9)(w-7)=0 | | -4n-5-5n+15=8+3n+6n | | 2(2x+3)=x+2x | | 2x-19=3x+2 | | 5x+8=15+4x | | 4p-6=2p+15 |